Section 2.5 Applications of Derivatives (Minimum homework: 1-9 odds)

1) The cost function for producing x units of a certain product is: $C(x)=0.1 x^{2}+8 x+100$,
a) Find $\mathrm{C}(100)$
b) Interpret your answer to part a.
c) Create the marginal cost function $C^{\prime}(x)$ for this product.
d) Find $\mathrm{C}^{\prime}(100)$
e) Interpret your answer to question part d.

1a)

$$
C(100)=0.1(100)^{2}+8(100)+100
$$

$C(100)=1900$
1b) The cost to produce 100 units of the product is $\$ 1,900$
${ }^{10} C^{\prime}(x)=2(0.1 x)+8$
$c^{\prime}(x)=0.2 x+8$
$C^{\prime}(100)=0.20(100)+8$
id) $C^{\prime}(100)=28$

1e) It will cost an additional $\$ 28$ to produce the $101^{\text {st }}$ unit of the product.
3) Suppose that the cost in dollars to make x cell phone cases is given by: $C(x)=\ln (x)+2 x$
a) Find $\mathrm{C}(100)$ (round to 2 decimals)
b) Interpret your answer to part a.
c) Create the marginal cost function $C^{\prime}(x)$ for this product.
d) Find $C^{\prime}(100)$ (round to 2 decimals)
e) Interpret your answer to question part d.

Ba)

$$
\begin{aligned}
C(100) & =\ln (100)+2(100) \\
& =204.60517
\end{aligned}
$$

$C(100)=204.61$

Bb) It will cost $\$ 204.61$ to produce 100 cell phone cases.
${ }_{31} C^{\prime}(x)=\frac{1}{x}+2$

$C^{\prime}(x)=\frac{1}{x}+2$
3d) $\int^{1}(100)=\frac{1}{100}+2$
$C^{\prime}(100)=2.01$

3f) It will cost an additional $\$ 2.01$ to produce the $101^{\text {st }}$ cell phone case.
5) Bob's Bobble heads company determines the profit function for producing and selling a certain bobble head can be modeled by: $P(x)=-0.001 x^{2}+8 x-10000 \leq x \leq 7000$. Where x represents the number of bobble heads sold and $P(x)$ represents the monthly profit in dollars.
a) Find $P(1000)$
b) Interpret your answer to part a. (round your answer to 2 decimals)
c) Create the marginal profit function $P^{\prime}(x)$ for this product.
d) Find $P^{\prime}(1000)$.
e) Interpret your answer to part d.
$501 P(1000)=-0.001(1000)^{2}+8(1000)$
$P(1000)=6000$
bb) The monthly profit is $\$ 6,000$ in a month in which 1000 bobble heads are sold.
${ }_{50} f^{\prime}(x)=2(-.001) x+8$
$P^{\prime}(x)=-0.002 x+8$
$5 d$
5) $P^{\prime}(1000)=-0.002(1000)+8=6$
$P^{\prime}(1000)=6$

Se) An additional $\$ 6$ of profit will be earned by selling the $1001^{\text {st }}$ bobble head.
7) A self-employed person determines that the weekly profit from his current vending machine route can be modeled by: $P(x)=10 x-\sqrt{x} \quad 0 \leq x \leq 200$; where x represents the number of vending machines stocked and $\mathrm{P}(\mathrm{x})$ represents the weekly profit.
a) Find $P(64)$
b) Interpret your answer to part a. (round your answer to 2 decimals)
c) Create the marginal profit function $P^{\prime}(x)$ for this product.
d) Find $P^{\prime}(64)$. (round to 2 decimals)
e) Interpret your answer to part d.
70) $P(64)=10(64)-\sqrt{64}=632$
$P(64)=632$

7b) The profit will be $\$ 632$ in a week in which 64 vending machines are stocked.
Tc) $P(x)=10)^{1 / 2}$

$$
\theta^{\prime}(x)=10-\frac{1}{2} x
$$

$P^{\prime}(x)=10-\frac{1}{2 \sqrt{x}}$
$P^{\prime}(x)=10-\frac{1}{2} x^{-1 / 2}$

Td)

$p^{\prime}(x)=10-\frac{1}{2 x^{1 / 2}}$

Te) An additional profit of $\$ 9.94$ will be earned by stocking the $65^{\text {th }}$ vending machine.
9) A Sun City couple has a small garden, and they grow blueberries. They have found the price-demand function is: $p(x)=-0.50 x+6.50$

Where x is the number of quarts of blueberries demanded and $p(x)$ represents the price per quart in dollars.
a) Find $p(5)$ round to 1 decimal.
b) Interpret you answer to part a.
c) Create a revenue function $\mathrm{R}(\mathrm{x})$ hint $R(x)=x * p(x)$ (revenue $=$ quantity* price)
d) Find $R(5)$.
e) Interpret your answer to part d.
f) Find the marginal revenue function $R^{\prime}(x)$.
g) Find $R^{\prime}(5)$.
h) Interpret your answer to part g.
8. $P(5)=-0.50(5)+6.50=4$
$p(5)=4$

9b) at a price of $\$ 4$ per quart, 5 quarts will be demanded
20 $R(x)=(-0.50 x+6.50) X$
$R(x)=-0.50 x^{2}+6.50 x$
${ }_{\infty}^{\infty} R(5)=-0.50(5)^{2}+6.50(5)$
$R(5)=20$

Me) The revenue will be $\$ 20$ when 5 quarts of blueberries are sold.
${ }_{\text {en }}^{n(x)=-x+65} \boldsymbol{R}^{\prime}(x)=2(-0.50) x+6.50$
$8 R^{\prime}(5)=-1(5)+6.50$
$R^{\prime}(5)=1.50$

9h) An additional $\$ 1.50$ of revenue will be earned when the $6^{\text {th }}$ quart of blueberries is sold.

